
Bug Cleaner
David Dahlbacka
Hancock Street Productions

Copyright 2007 by David Dahlbacka

All rights reserved.

3

Contents
Debugging Heap Corruption in Visual C++ 5
Heap Corruption.. 5
Causes of Heap Corruption.. 6
Debugging Heap Corruption .. 6

Debugging Tools... 7
Specific WinDbg Commands ... 8
Specific GFlags Commands... 9

Preparation for Debugging.................................. 10
Program Installation and Compilation 10
First-Time WinDbg Options.. 10

Live Debugging ... 11
Standard Heap Options.. 12
Full or DLLs Heap Options... 13

Postmortem Debugging 14
Analyzing a Memory Dump.. 15

References.. 15
Example Program ... 16
Example Program Code... 17

Index... 21
Contents

4

Contents

5

Chapter 1

Debugging Heap Corruption in
Visual C++
Using Microsoft Debugging Tools for Windows

David Dahlbacka

As an experienced programmer, you may have already faced one of
the hardest parts of your job: fixing a bug, such as an access
violation, caused by corruption in program-allocated heap memory.
Such bugs can be very difficult and frustrating to diagnose,
because every change you make to the program also changes heap
memory - including adding debug print code, commenting out
code, running a debugger, and changing the input data. Thus,
anything you do to investigate the problem may cause the symptom
to disappear or move to another point in the program execution.

Heap Corruption
Heap corruption is an undesired change in the data allocated by
your program. Its symptoms include:

• System errors, such as access violations.

• Unexpected data in program output.

• Unexpected paths of program execution.

Your program may show a symptom of heap corruption immedi-
ately or may delay it indefinitely, depending on the execution path
through the program.
Debugging Heap Corruption in Visual C++: Heap Corruption

6

Causes of
Heap
Corruption

Your program can cause heap corruption in several ways,
including:

• Using too large a value to index an array. If the adjacent memory is
allocated to another object, the program will overwrite that object's data.

• Casting a pointer to a data type larger than the original allocation's data
type. If the adjacent memory is allocated to another object, the program
will overwrite that object's data when it accesses a data field outside the
original allocation.

• Deleting an object prematurely while retaining a pointer to it. When the
operating system allocates the memory for new data, the program will
overwrite the old data with the new data.

• (COM only) Releasing all pointers to a particular COM interface in a
subprogram while retaining a COM pointer to that interface in the calling
subprogram. When your program releases the last COM pointer in the
subprogram, the operating system will mark that interface and all its
methods and data items as not valid. If the calling subprogram then uses its
own COM pointer, the system will generate an access violation.

Debugging
Heap
Corruption

To debug heap corruption, you must identify both the code that
allocated the memory involved and the code that deleted, released,
or overwrote it. If the symptom appears immediately, you can often
diagnose the problem by examining code near where the error
occurred. Often, however, the symptom is delayed, sometimes for
hours. In such cases, you must force a symptom to appear at a time
and place where you can derive useful information from it.

A common way to do this is for you to command the operating
system to insert a special suffix pattern into a small segment of
extra memory and check that pattern when the memory is deleted.
Another way is for the operating system to allocate extra memory
after each allocation and mark it as Protected, which would cause
the system to generate an access violation when it was accessed.
Debugging Heap Corruption in Visual C++: Heap Corruption

7

Debugging Tools
To perform this procedure, you will use the Debugging Tools for
Windows, available for free download from the Microsoft WKD
and Developer Tools web pages. To find the download site, search
the Web for a string similar to "Install Debugging Tools for
Windows 32-bit Version" and download and install the following
version or later, taking all defaults: "Current Release version
6.6.7.5 - July 18, 2006".

From the Debugging Tools for Windows, you will use the
following programs:

• WinDbg.exe: A heap-level debugging program similar to the Visual C++
debugger. Using WinDbg, you can set breakpoints in source and assembly
code, display the values of variables, dump heap memory into a file, and
analyze such a dump offline.

• GFlags.exe: A heap debug program. Using GFlags, you can establish
standard, /full, or /dlls heap options that will force the operating system to
generate access violations and corruption errors when your program
overwrites heap memory.
Debugging Heap Corruption in Visual C++: Debugging Tools

8

Specific
WinDbg
Commands

You will use the following specific WinDbg commands and menu
items, in addition to the familiar debugger commands of Go, Step,
Watch, and so on:

Command Meaning

Fi le, then Open
Executable

Brings up your program inside the WinDbg
debugger. This al lows you to debug the
in i t ia l izat ion phases of your program's
execut ion. However, the program's memory
usage is somewhat d i fferent f rom that of
ordinary execut ion.

Fi le, then Attach
to a Process

Links the WinDbg debugger to your program
after i t has star ted running. You cannot debug
the in i t ia l izat ion phases of your program's
execut ion.However, the program's memory
usage is more simi lar to that of ord inary
execut ion than i f you had brought up the
program inside the debugger.

Fi le, then Symbol
Fi le Path

Directs the WinDbg debugger to the director ies
in which the VC++ compi ler has placed the
debug (.pdb) f i les that your program needs to
display symbols, such as subprogram names.

Fi le, then Source
Fi le Path

Directs the WinDbg debugger to the director ies
in which the source f i les for your program
reside.

.symfix+

Turns on access to the Microsoft onl ine symbol
server. The resul t ing path appears in the
Symbol Fi le Path. You must be connected to the
Web for this command to work.

.dump /ma
Fi lename.dmp

Dumps heap memory in mini-dump format. The /
ma opt ion means i t is a mini-dump (/m.. .)
contain ing al l (. . .a) informat ion needed to
reconstruct the state of the program when the
dump occurred.

Fi le, then Open
Crash Dump

Directs the WinDbg debugger to a dump f i le
produced by the .dump command.

!analyze -v
Analyzes the contents of a dump f i le produced
by the .dump command. The -v stands for
"verbose" in format ion.
Debugging Heap Corruption in Visual C++: Debugging Tools

9

Specific
GFlags
Commands

You will use the following specific GFlags commands:

Command Meaning

GFlags /p Displays the state of the page heap
opt ions.

GFlags /p /enable
Program.exe

Enables standard heap opt ions for
Program.exe. GFlags inserts a suff ix
pattern into the heap after each a l locat ion
by your program. Your program wi l l use
somewhat more memory and run
somewhat s lower than normal.

GFlags /p /enable
Program.exe / fu l l

Enables fu l l heap opt ions for
Program.exe. GFlags inserts an ent i re
page of protected memory into the heap
after each a l locat ion by your program.
Your program wi l l use much more memory
and run much slower than normal.

GFlags /p /enable
Program.exe /dl ls
Library1.d l l ,L ibrary2.dl l
, . . .

Enables standard heap opt ions for
Program.exe and al l dynamic l ink l ibrar ies
(DLLs) not l is ted after the /dl ls opt ion. In
addi t ion, i t enables fu l l heap opt ions for
the l is ted DLL or DLLs. Separate i tems in
the DLL l is t by commas. Your program wi l l
run faster and use less memory than i t
would i f you had used the / fu l l opt ion.

GFlags /p /enable
Program.exe /debug
Debugger.exe

Enables standard heap opt ions for
Program.exe. In addi t ion, i t designates
Debugger.exe as the debugger to
automat ical ly run i f the program crashes.
The /debug opt ion comes after / fu l l or /
d l ls in the command l ine.

GFlags /p /d isable
Program.exe

Disables al l heap opt ions for
Program.exe. You should do this at the
end of each debug session. Otherwise,
every user of the program after you wi l l
exper ience s low performance.

GFlags
Invokes a d ialog box that al lows you to
review and change the current GFlags
sett ings.
Debugging Heap Corruption in Visual C++: Debugging Tools

10
Preparation for Debugging
You must prepare the debugging environment before you run the
program. In particular, you must install the debugging tools,
compile your program with the correct options, and configure the
debugging tools to run with your program.

Program
Installation
and
Compilation

1.Install Microsoft Debugging Tools for Windows as indicated in
Debugging Tools.

2.Add the path to the Debugging Tools for Windows directory to
your system path via ControlPanel->System->Advanced-
>Environment Variables. This will allow you to run Debugging
Tools programs from a command line.

3.Compile your program and any DLLs it uses with the following
compiler options:

/Od /Oi

These options turn off compiler optimization and store debug
symbols in .pdb files in the same directory as the .exe file, usually
the Debug directory.

First-Time
WinDbg
Options

You should execute the following one-time tasks the first time you
run your program with WinDbg:

1.Start WinDbg.exe.

2. If you can attach WinDbg to your program after it has started,
start your program and attach WinDbg to the process by clicking
on File->Attach to a Process and following the prompts.
Otherwise, run your program from WinDbg using File->Open
Executable likewise.

3. In the command line at the bottom of the Command window, type
the following command.

.symfix+
Debugging Heap Corruption in Visual C++: Preparation for Debugging

11
This will connect this and future WinDbg sessions associated with
this program to the Microsoft symbol server

4.Click on File->Symbol File Path and browse to the directory
where your program's .exe file resides. Click again and browse to
the directory where any DLLs you are using reside.

5.Click on File->Source File Path and browse to the directory
where your program's source files reside. Click again and browse
to the directory where the source files for any DLLs you are using
reside.

6.Exit WinDbg, clicking Yes to store the WinDbg options
associated with this program.

You will set other options from the command line before you run
the program and from the WinDbg interface after you have
attached to the program.

Live Debugging
A live debugging session has three main parts, executed itera-
tively as you debug:

1.Setting GFlags options.

2.Running the program to a breakpoint.

3.Analyzing the program state at the breakpoint.

As a rule, you should plan at least two iterations, one with standard
heap options and one with either the /full or the /dlls options. The
example program in the appendix is small enough to allow you to
use the /full option. Normally you will use the /dlls option.

Note that you must set up all GFlags options before you run your
program. When the system starts your program, it uses whatever
GFlags options were set at that time and does not change them
until the run is finished.
Debugging Heap Corruption in Visual C++: Live Debugging

12
Standard
Heap Options

A session with standard heap options would go as follows:

1. Set standard heap options.

GFlags /p /enable Program.exe

2. Invoke WinDbg.exe.

3.Run Program.exe from WinDbg using File->Open Executable. If
this were a program that brought up a command window or a
dialog box that waited for user input, you could also run it from the
command line or via Windows, and then attach WinDbg to it by
using File->Attach to a Process.

4.Click View->Call Stack to display the call stack.

5.Click WinDbg->Go from the toolbar.

6.Wait for an error to occur. The standard heap options cause the
system to place a suffix pattern after each allocation.

When your program attempts to delete the allocation, the system
will check the suffix pattern, and if it has been overwritten, the
system will raise an error. The symptom might be an error popup,
an Application Verify Stop, an Access Violation, a Memory Check
Error, or any other error type severe enough to force the operation
system to halt execution.

You may be able to find out why the memory is being corrupted by
examining the error message, the contents of the registers and
memory at various levels in the call stack, and the corresponding
source and assembly-language code.

7.Click Stop Debugging in the WinDbg toolbar. This will halt the
program and empty the debug window.

8.Clear the heap options. If you do not do this, every user of the
program after you will experience slow performance.

GFlags /p /disable Program.exe
Debugging Heap Corruption in Visual C++: Live Debugging

13
Full or DLLs
Heap Options

From the stack trace, you've discovered where the object was
deleted, though not necessarily what allocated the memory or what
corrupted it. You have developed some notion of where it might
have been created and how it was processed. You can use this
information to guide your search for a solution.

1.Set /full or /dlls heap options. For a very small program, you can
use /full heap options, as follows:

GFlags /p /enable Program.exe /full

For more complex code, you would use /dlls options, as follows:

GFlags /p /enable Program.exe /dlls Library1.dll, Library2.dll,...

2. Invoke WinDbg.exe.

3.Run Program.exe from WinDbg using File->Load Executable.

4.Click View->Call Stack to display the call stack.

5.Click WinDbg->Go from the toolbar.

6.Wait for an error to occur. The /full and /dlls heap options cause
the system to place a full page of protected memory after each
allocation from the designated scope or scopes. For the /dlls
options, the system places a suffix pattern after each allocation
from the remaining scopes.

When your program attempts to write into the protected memory,
the system will raise an error. The symptom might be an error
popup, an Application Verify Stop, an Access Violation, a Memory
Check Error, or any other error type severe enough to force the
operation system to halt execution. Note that the system will raise
errors with /full or /dlls heap options that it will not raise with
standard heap options.

You may be able to find out why the memory is being corrupted by
examining the error message, the contents of the registers and
memory at various levels in the call stack, and the corresponding
source and assembly-language code.
Debugging Heap Corruption in Visual C++: Live Debugging

14
7.Click Stop Debugging in the WinDbg toolbar. This will halt the
program and empty the debug window.

8.Clear the heap options:

GFlags /p /disable Program.exe

Postmortem Debugging
You prepare and execute postmortem debugging in much the same
way you prepare for live debugging, including settings for GFlags.
The main difference is that you do not run the program in the
debugger or attach the debugger to the program after it starts.
Instead, you run the program as intended, but use GFlags to
designate a debugger that the system will attach to the program if
there is an error. The advantage of this procedure is that you can
minimize the effect upon program execution of your preparations
for debugging.

1.Set standard heap options with a designated debugger:

GFlags /p /enable Program.exe /debug WinDbg.exe

2.Run your program.

3.Wait for an error to occur. The error might be an Application
Verify Stop, an Access Violation, a Memory Check Error, or any
other error type severe enough to force the operation system to
attach the debugger to the process and bring it up at a breakpoint.
Then you can either analyze the error online as in any other debug
session, or evaluate the error offline.

To evaluate the error offline, you can pull a memory dump by
typing the following into the WinDbg command line:

.dump /ma Filename.dmp

4.Click Stop Debugging in the WinDbg toolbar. This will halt the
program and empty the debug window.

5.Clear the heap options:
Debugging Heap Corruption in Visual C++: Postmortem Debugging

15
GFlags /p /disable Program.exe

Analyzing a
Memory
Dump

If you have pulled a memory dump using the .dump command, you
can load and analyze it as follows:

1. Invoke WinDbg.exe and set up symbol paths and source file
paths as above.

2.Load the memory dump file by File->Open Crash Dump.

3.Analyze the memory dump by typing the following command
into the command window:

!analyze -v

The !analyze command will produce a verbose stack trace and an
error exception, much like those that WinDbg produces when you
are debugging online. The main difference is that you cannot run
the program and sometimes lack complete access to runtime
variables.

References
The key reference material for the Microsoft Debugging Tools for
Windows is the online help, accessible from the WinDbg Help
menu. See in particular the following:

"Example 12: Using Page Heap Verification to Find a Bug

"GFlags Commands

"Specific Exceptions

"Create Dump File

These tools and the Debugging Tools for Windows themselves
implement many other useful features. To find out more about
them, consult Debugging Help from Start->Debugging Tools for
Windows.
Debugging Heap Corruption in Visual C++: References

16
The Microsoft web site contains a great deal of useful information
about debugging Windows programs. Search on "Debugging Tools
for Windows."

You may also wish to investigate commercially-available tools,
such as Purify and BoundsChecker. For more information on these
tools, Google on "Rational Purify" and " DevPartner Studio". For
more on heap debugging in general, Google on "heap debugging".

Example Program
As an example, you may set up the following program, which
contains an out-of-range array error, an oversized structure cast
error, and a premature delete error.

1.Create a Win32 Console Application project named ConsoleExe.
(Do not create a Win32 Application. ConsoleExe uses standard I/O,
which requires a DOS window.)

2.Copy the code at the end of this appendix into ConsoleExe.cpp in
place of the existing main program.

3.Compile and link the ConsoleExe application with the compiler
options /Od /Oi.

4.At this point, you have three alternatives: (a) Run it from the
command line and attach WinDbg to it as it waits for input; (b)
start it from WinDbg; or (c) use the /debug WinDbg.exe option to
bring up the debugger on an error.

You can then observe how the various heap debug options affect
the behavior of the program and that of the debugger.
Debugging Heap Corruption in Visual C++: Example Program

17
Example
Program
Code

// ConsoleEXE.cpp : Defines the entry point
// for the console application.

#include "stdafx.h"
#include <stdio.h>
#include <stdlib.h>

const int ciSize = 5;

typedef struct SmallStruct
{
 short shShort1;
 short shShort2;
} SmallStruct;

typedef struct BigStruct
{
 long lLong1;
 long lLong2;
} BigStruct;

void ArrayOverrunCrash(void);
void OversizedCastCrash(void);
void PrematureDeleteCrash(void);

int main(int argc, char* argv[])
{
 bool bExit = false;
 char sInput[ciSize];
 //========
 printf("Welcome to Crash Test Dummy.\n");
 do
 {
 printf("\nEnter 'a' for array overrun.\n");
 printf("Enter 'c' for oversized cast.\n");
 printf("Enter 'd' for premature delete.\n");
 printf("Enter 'x' to exit.>>");
 scanf("%s", sInput);
 switch (sInput[0])
 {
 case 'a':
 case 'A':
 ArrayOverrunCrash();
 break;
 case 'c':
Debugging Heap Corruption in Visual C++: Example Program

18
 case 'C':
 OversizedCastCrash();
 break;
 case 'd':
 case 'D':
 PrematureDeleteCrash();
 break;
 case 'x':
 case 'X':
 bExit = true;
 break;
 default:;
 // Do nothing
 }
 }
 while (! bExit);
 return 0;
}

void ArrayOverrunCrash(void)
{
 char *sASCII = new char[ciSize];
 for (int i = 0; i <= ciSize; i++)
 {
 // sASCII[ciSize] is outside array.
 sASCII[i] = (char)rand();
 }
 delete [] sASCII;
}

void OversizedCastCrash(void)
{
 SmallStruct *pSmallStruct = new SmallStruct;

 pSmallStruct->shShort1 = 1;
 pSmallStruct->shShort2 = 2;
 BigStruct *pBigStruct =(BigStruct *)pSmall-
Struct;
 pBigStruct->lLong1 = 1;

 // lLong2 is outside pSmallStruct memory.
 pBigStruct->lLong2 = 2;

 delete pSmallStruct;
}

Debugging Heap Corruption in Visual C++: Example Program

19
void PrematureDeleteCrash(void)
{
 SmallStruct *pSmallStruct = new SmallStruct;
 pSmallStruct->shShort1 = 1;
 delete pSmallStruct;
 // pSmallStruct points to deleted memory.
 pSmallStruct->shShort2 = 2;
}

Debugging Heap Corruption in Visual C++: Example Program

20
Debugging Heap Corruption in Visual C++: Example Program

21

Index
C
causes of heap corruption

out of range array index 6
pointer cast to oversized object 6
premature deletion of memory 6
premature release of COM object 6

commercial tools
DevPartner Studio 16
Rational Purify 16

D
debugging heap corruption

by debug on error 14
by inspection 6, 12, 13
by memory dump analysis 15
by protected memory 6, 13
by suffix pattern 6, 12, 13
from crash dump 14
identifying allocating code 6
identifying deleting code 6
interactive 11
postmortem 14
using DLL heap options 12
using full heap options 12
using standard heap options 12

debugging tools for windows
downloading 7
reference material 15
version 7

E
example program code 17

F
file

attach to a process 8
open crash dump 8
open executable 8
source file path 8
symbol file path 8

G
gflags commands

to disable heap options 9
to enable debugger 9
to enable full heap options 9
to enable heap options for specific

DLLs 9
to enable standard heap options 9
to get state of heap options 9
to invoke gflags dialog box 9

H
heap corruption

causes 6
debugging 6
defined 5
symptoms 5

M
Microsoft

Debugging Tools for Windows 7
gflags 7
windbg 7

O
out of range array index, as cause of
Index

22
heap corruption 6

P
pointer cast to oversized object, as
cause of heap corruption 6
premature deletion, as cause of heap
corruption 6
premature release of COM object, as
cause of heap corruption 6
preparation for debugging 10

attaching windbg to program 10
compiler options 10
connecting to Microsoft symbol

server 10
example program 16
installation. See debugging tools for

windows 10
running program from windbg 10
setting source file path 11
setting symbol file path 11
storing windbg options 11
updating path variable 10

W
windbg command line

!analyze 8
.dump 8
.symfix+ 8

windbg commands
to access microsoft symbol server 8
to analyze a crash dump 8
to attach to a process 8
to define path to source file 8
to define symbol file path 8
to dump heap memory 8
to open a crash dump 8

to open executable for instrumenta-
tion 8
Index

	Bug Cleaner
	Contents
	Debugging Heap Corruption in Visual C++
	Heap Corruption
	Causes of Heap Corruption
	Debugging Heap Corruption

	Debugging Tools
	Specific WinDbg Commands
	Specific GFlags Commands

	Preparation for Debugging
	Program Installation and Compilation
	First-Time WinDbg Options

	Live Debugging
	Standard Heap Options
	Full or DLLs Heap Options

	Postmortem Debugging
	Analyzing a Memory Dump

	References
	Example Program
	Example Program Code
	C
	D
	E
	F
	G
	H
	M
	O
	P
	W

	Index

